Iris Recognition Without Iris Normalization

نویسندگان

  • Lenina Birgale
  • M. Kokare
چکیده

Problem statement: In any real time biometric system processing speed and recognition time are crucial parameters. Reducing processing time involves many parameters like normalization, FAR, FRR, management of eyelid and eyelash occlusions, size of signature etc. Normalization consumes substantial amount of time of the system. This study contributes for improved iris recognition system with reduced processing time, False Acceptance Rate (FAR) and False Rejection Rate (FRR). Approach: To improve system performance and reliability of a biometric system. It avoided the iris normalization process used traditionally in iris recognition systems. The technique proposed here used different masks to filter out iris image from an eye. Comparative study of different masks was done and optimized mask is proposed. The experiment was carried on CASIA database consisting of 756 iris images of 108 persons. Each person contributes seven images of eye (108×7 = 756) images in the database. Results: In the proposed method: (1) Normalization step is avoided; (2) Computational time is reduced by 0.3342 sec; (3) Iris signature size is reduced; (4) Improved performance parameters. (With reduced feature size, proposed method achieves 99.4866% accuracy, 0.0069% FAR, 1.0198% FRR and significant increase in speed of the system). Conclusion: Iris signature proposed was comparatively small just of 1×24 size. Though Daugman’s method gives best accuracy of 99.90% but the iris signature length used by that algorithm is comparatively very high that is 1×2048 phase vector. Also Daugman has used phase information in signature formation. Our method gives a accuracy of 99.474% with a signature of comparatively very small length. This has definitely contributed to improve the speed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of the Parameters Involved in the Iris Recognition System

Biometric recognition is an automatic identification method which is based on unique features or characteristics possessed by human beings and Iris recognition has proved itself as one of the most reliable biometric methods available owing to the accuracy provided by its unique epigenetic patterns. The main steps in any iris recognition system are image acquisition, iris segmentation, iris norm...

متن کامل

Robust Iris Recognition in Unconstrained Environments

A biometric system provides automatic identification of an individual based on a unique feature or characteristic possessed by him/her. Iris recognition (IR) is known to be the most reliable and accurate biometric identification system. The iris recognition system (IRS) consists of an automatic segmentation mechanism which is based on the Hough transform (HT). This paper presents a robust IRS i...

متن کامل

A Fast Localization and Feature Extraction Method Based on Wavelet Transform in Iris Recognition

With an increasing emphasis on security, automated personal identification based on biometrics has been receiving extensive attention. Iris recognition, as an emerging biometric recognition approach, is becoming a very active topic in both research and practical applications. In general, a typical iris recognition system includes iris imaging, iris liveness detection, and recognition. This rese...

متن کامل

SIFT based iris recognition with normalization and enhancement

SIFT is a novel and promising method for iris recognition. However, some shortages exist in many related methods, such as difficulty of feature extraction, feature loss, and noise point introduction. In this paper, a new method named SIFT-based iris recognition with normalization and enhancement is proposed for achieving better performance. In Comparison with other SIFT-based iris recognition a...

متن کامل

A New IRIS Segmentation Method Based on Sparse Representation

Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010